# Fraction calculator

The calculator performs basic and advanced operations with fractions, expressions with fractions combined with integers, decimals, and mixed numbers. It also shows detailed step-by-step information about the fraction calculation procedure. Solve problems with two, three, or more fractions and numbers in one expression.

## Result:

### 4 1/3 - 1/4 = 49/12 = 4 1/12 ≅ 4.0833333

Spelled result in words is forty-nine twelfths (or four and one twelfth).### How do you solve fractions step by step?

- Conversion a mixed number 4 1/3 to a improper fraction: 4 1/3 = 4 1/3 = 4 · 3 + 1/3 = 12 + 1/3 = 13/3

To find a new numerator:

a) Multiply the whole number 4 by the denominator 3. Whole number 4 equally 4 * 3/3 = 12/3

b) Add the answer from previous step 12 to the numerator 1. New numerator is 12 + 1 = 13

c) Write a previous answer (new numerator 13) over the denominator 3.

Four and one third is thirteen thirds - Subtract: 13/3 - 1/4 = 13 · 4/3 · 4 - 1 · 3/4 · 3 = 52/12 - 3/12 = 52 - 3/12 = 49/12

For adding, subtracting, and comparing fractions, it is suitable to adjust both fractions to a common (equal, identical) denominator. The common denominator you can calculate as the least common multiple of both denominators - LCM(3, 4) = 12. In practice, it is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 3 × 4 = 12. In the following intermediate step, the fraction result cannot be further simplified by canceling.

In other words - thirteen thirds minus one quarter = forty-nine twelfths.

#### Rules for expressions with fractions:

**Fractions**- use the slash “/” between the numerator and denominator, i.e., for five-hundredths, enter

**5/100**. If you are using mixed numbers, be sure to leave a single space between the whole and fraction part.

The slash separates the numerator (number above a fraction line) and denominator (number below).

**Mixed numerals**(mixed fractions or mixed numbers) write as non-zero integer separated by one space and fraction i.e.,

**1 2/3**(having the same sign). An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both signs for fraction line and division, we recommended use colon (:) as the operator of division fractions i.e.,

**1/2 : 3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

The colon

**:**and slash

**/**is the symbol of division. Can be used to divide mixed numbers

**1 2/3 : 4 3/8**or can be used for write complex fractions i.e.

**1/2 : 1/3**.

An asterisk

*****or

**×**is the symbol for multiplication.

Plus

**+**is addition, minus sign

**-**is subtraction and

**()[]**is mathematical parentheses.

The exponentiation/power symbol is

**^**- for example:

**(7/8-4/5)^2**= (7/8-4/5)

^{2}

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• exponentiation of fraction: 3/5^3

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction: 4/22

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

Be careful, always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) has the same priority and then must evaluate from left to right.

## Fractions in word problems:

- Comparing and sorting

Arrange in descending order this fractions: 2/7, 7/10 & 1/2 - Roma ate

Roma ate 2/5 of a cake while Somya ate 3/7 of the same cake. Who ate more and by how much? - Sort fractions

Which of the following fractions is the largest? 29/36 5/6 7/9 3/4 - Math test

Brayden was solving some math problems for the math team. He answered 2 math problems. Matthew answered 3, John answered 1 reasoning. Matthew 1/2 times as many. Brayden said that 2/6. Is he correct? Why or why not? Be sure to explain your answer. - Ten fractions

Write ten fractions between 1/3 and 2/3 - Fractions

Sort fractions z_{1}= (6)/(11); z_{2}= (10)/(21); z_{3}= (19)/(22) by its size. Result write as three serial numbers 1,2,3. - Orchard

One-eighth of the trees in the fruit plant in winter froze, and one-twelfth of damaged disease and pests. Healthy trees remained 152. Is it enough to supply 35 trees to restore the original number of trees in the orchard? - How many

How many integers are greater than 547/3 and less than 931/4? - Sort fractions

Which is larger 3/7, 3/8, 3/9, 3/6 = - Leo hiked

Leo hiked 6/7 of a kilometer. Jericho hiked 2/3 kilometer. Who covered a longer distance? How much longer? - Engineer Kažimír

The difference between politicians-demagogues and reasonable person with at least primary education beautifully illustrated by the TV show example. "Engineer" Kažimír says that during their tenure there was a large decline in the price of natural gas, pri - A small

A small book took one-sixth of a ream of paper to make. The team said they could make nine books from 3 whole reams of paper. Are they correct? - Buing

Brother got to buy 240 CZK and could buy for 1/8 what he wanted. Could he pay the rest of the purchase for 200 CZK?

next math problems »