Mississippi

Mississippi flag
Skills available for Mississippi fifth-grade science standards

Standards are in black and IXL science skills are in dark green. Hold your mouse over the name of a skill to view a sample question. Click on the name of a skill to practice that skill.

Show alignments for:

Actions

L.5 Life Science

  • DCI.L.5.3 Ecology and Interdependence

    • All organisms need energy to live and grow. Energy is obtained from the sun. Cells transform the energy that organisms need to perform essential life functions through a complex sequence of reactions in which chemical energy is transferred from one system of interacting molecules to another.

      • L.5.3A Students will demonstrate an understanding of photosynthesis and the transfer of energy from the sun into chemical energy necessary for plant growth and survival.

        • L.5.3A.1 Research and communicate the basic process of photosynthesis that is used by plants to convert light energy into chemical energy that can be stored and released to fuel an organism's activities.

        • L.5.3A.2 Analyze environments that do not receive direct sunlight and devise explanations as to how photosynthesis occurs, either naturally or artificially.

    • A major role an organism serves in an ecosystem can be described by the way in which it obtains its energy. Energy is transferred within an ecosystem by producers, consumers, or decomposers. A healthy ecosystem is one in which a diverse population of life forms can meet their needs in a relatively stable web of life.

      • L.5.3B Students will demonstrate an understanding of a healthy ecosystem with a stable web of life and the roles of living things within a food chain and/or food web, including producers, primary and secondary consumers, and decomposers.

P.5 Physical Science

  • DCI.P.5.5 Organization of Matter and Chemical Interactions

    • Matter can be segregated into tiny particles that are too small to see, but can be detected by other methods. These tiny particles are referred to as atoms, which can be combined to form molecules. Substances exhibit specific properties that can be observed and measured.

    • Substances of the same type can be classified by their similar, observable properties. Substances can be combined in a variety of ways. A mixture is formed when two or more kinds of matter are physically combined. Solutions are a special type of mixture in which one substance is distributed evenly into another substance. When the physical properties of the components in a mixture are not changed, they can be separated in different physical ways.

      • P.5.5B Students will demonstrate an understanding of mixtures and solutions.

        • P.5.5B.1 Obtain and evaluate scientific information to describe what happens to the properties of substances in mixtures and solutions.

        • P.5.5B.2 Analyze and interpret data to communicate that the concentration of a solution is determined by the relative amount of solute versus solvent in various mixtures.

        • P.5.5B.3 Investigate how different variables (e.g., temperature change, stirring, particle size, or surface area) affect the rate at which a solute will dissolve.

        • P.5.5B.4 Design an effective system (e.g., sifting, filtration, evaporation, magnetic attraction, or floatation) for separating various mixtures. Use an engineering design process to define the problem, design, construct, evaluate, and improve the system.

    • Physical properties can be observed and measured without changing the composition of matter. A physical change occurs when the matter's physical appearance is altered while leaving the composition of the matter unchanged. When two or more substances are mixed together, a new substance with different properties can sometimes be formed, but the total amount (i.e., mass) of the substances is conserved (i.e., total mass stays the same). In a chemical change, the composition of the original matter is altered to create a new substance. A different compound is present at the completion of the chemical change.

  • DCI.P.5.6 Motions, Forces, and Energy

    • Gravity is a force that draws objects to Earth. This force acting on an object near Earth's surface pulls that object toward the planet's center. The motion of an object can be described in terms of its position, direction, and speed. Multiple factors determine the rate and motion of an object. Other than Earth, any celestial objects will exert varying gravitational pulls on other objects according to their mass and density.

E.5 Earth and Space Science

  • DCI.E.5.8 Earth and the Universe

    • Astronomy is the study of celestial objects in our solar system and beyond. A solar system includes one or more suns (stars) and all other objects orbiting in that system. Planets in our night sky change positions and are not always visible from Earth as they orbit our sun. Stars that can be seen in the night sky lie beyond our solar system and appear in patterns called constellations. Constellations can be used for navigation and appear to move together across the sky because of Earth's rotation and revolution around the sun.

      • E.5.8A Students will demonstrate an understanding of the locations of objects in the universe.

        • E.5.8A.1 Develop and use scaled models of Earth's solar system to demonstrate the size, composition (i.e., rock or gas), location, and order of the planets as they orbit the Sun.

        • E.5.8A.2 Use evidence to argue why the sun appears brighter than other stars.

        • E.5.8A.3 Describe how constellations appear to move from Earth's perspective throughout the seasons (e.g., Ursa Major, Ursa Minor, and Orion).

        • E.5.8A.4 Construct scientific arguments to support claims about the importance of astronomy in navigation and exploration, including the use of telescopes, compasses, and star charts.

    • Earth orbits around the sun as the moon orbits around Earth. The revolution and rotation of Earth on a tilted axis provide evidence of patterns that can be observed, studied, and predicted.

      • E.5.8B Students will demonstrate an understanding of the principles that govern moon phases, day and night, appearance of objects in the sky, and seasonal changes.

        • E.5.8B.1 Analyze and interpret data from observations and research (e.g., from NASA, NOAA, or the USGS) to explain patterns in the location, movement, and appearance of the moon throughout a month and over the course of a year.

        • E.5.8B.2 Develop and use a model of the Earth-Sun-Moon system to analyze the cyclic patterns of lunar phases, solar and lunar eclipses, and seasons.

        • E.5.8B.3 Develop and use models to explain the factors (e.g., tilt, revolution, and angle of sunlight) that result in Earth's seasonal changes.

        • E.5.8B.4 Obtain information and analyze how our understanding of the solar system has evolved over time (e.g., Earth-centered model of Aristotle and Ptolemy compared to the Sun-centered model of Copernicus and Galileo).

  • DCI.E.5.10 Earth's Resources

    • Human activities can impact natural processes and availability of resources. To reduce impacts on the environment (including humans), various best practices can be used. New and improved conservation practices are constantly being developed and tested.

      • E.5.10 Students will demonstrate an understanding of the effects of human interaction with Earth and how Earth's natural resources can be protected and conserved.

        • E.5.10.1 Collect and organize scientific ideas that individuals and communities can use to conserve Earth's natural resources and systems (e.g., implementing watershed management practices to conserve water resources, utilizing no-till farming to improve soil fertility, reducing emissions to abate air pollution, or recycling to reduce landfill waste).

        • E.5.10.2 Design a process for better preparing communities to withstand manmade or natural disasters (e.g., removing oil from water or soil, systems that reduce the impact of floods, structures that resist hurricane forces). Use an engineering design process to define the problem, design, construct, evaluate, and improve the disaster plan.